32 research outputs found

    Left Atrial Chamber and Appendage Function After Internal Atrial Defibrillation: A Prospective and Serial Transesophageal Echocardiographic Study

    Get PDF
    AbstractObjectives. The purpose of this prospective study was to assess left atrial chamber and appendage function after internal atrial defibrillation of atrial fibrillation and to evaluate the time course of recovery.Background. External cardioversion of atrial fibrillation may result in left atrial appendage dysfunction (“stunning”) and may promote thrombus formation. In contrast to external cardioversion, internal atrial defibrillation utilizes lower energies; however, it is unknown whether the use of lower energies may avoid stunning of the left atrial appendage.Methods. Transesophageal and transthoracic echocardiography were performed in 20 patients 24 h before and 1 and 7 days after internal atrial defibrillation to assess both left atrial chamber and appendage function. Transthoracic echocardiography was again performed 28 days after internal atrial defibrillation to assess left atrial function. The incidence and degree of spontaneous echo contrast accumulation (range 1+ to 4+) was noted, and peak emptying velocities of the left atrial appendage were measured before and after internal atrial defibrillation. To determine left atrial mechanical function, peak A wave velocities were obtained from transmitral flow velocity profiles.Results. Sinus rhythm was restored in all patients. The mean ± SD peak A wave velocities increased gradually after cardioversion, from 0.47 ± 0.16 m/s at 24 h to 0.61 ± 0.13 m/s after 7 days (p < 0.05) and 0.63 ± 0.13 m/s after 4 weeks. Peak emptying velocities of the left atrial appendage were 0.37 ± 0.16 m/s before internal atrial defibrillation, decreased significantly after internal atrial defibrillation to 0.23 ± 0.1 m/s at 24 h (p < 0.01) and then recovered to 0.49 ± 0.23 m/s (p < 0.01) after 7 days. The corresponding values for the degree of spontaneous echo contrast were 1.2 ± 1.2 before internal atrial defibrillation versus 2.0 ± 1.0 (p < 0.01) and 1.1 ± 1.3 (p < 0.01) 1 and 7 days after cardioversion, respectively. One patient developed a new thrombus in the left atrial appendage, and another had a thromboembolic event after internal atrial defibrillation.Conclusions. Internal atrial defibrillation causes depressed left atrial chamber and appendage function and may result in the subacute accumulation of spontaneous echo contrast and development of new thrombi after cardioversion. These findings have important clinical implications for anticoagulation therapy before and after low energy internal atrial defibrillation in patients with atrial fibrillation.(J Am Coll Cardiol 1997;29:131–8)

    Characterization of Mott-insulating and superfluid phases in the one-dimensional Bose--Hubbard model

    Full text link
    We use strong-coupling perturbation theory, the variational cluster approach (VCA), and the dynamical density-matrix renormalization group (DDMRG) method to investigate static and dynamical properties of the one-dimensional Bose--Hubbard model in both the Mott-insulating and superfluid phases. From the von Neumann entanglement entropy we determine the central charge and the transition points for the first two Mott lobes. Our DMRG results for the ground-state energy, momentum distribution function, boson correlation function decay, Mott gap, and single particle-spectral function are reproduced very well by the strong-coupling expansion to fifth order, and by VCA with clusters up to 12 sites as long as the ratio between the hopping amplitude and on-site repulsion, t/U, is smaller than 0.15 and 0.25, respectively. In addition, in the superfluid phase VCA captures well the ground-state energy and the sound velocity of the linear phonon modes. This comparison provides an authoritative estimate for the range of applicability of these methods. In strong-coupling theory for the Mott phase, the dynamical structure factor is obtained from the solution of an effective single-particle problem with an attractive potential. The resulting resonances show up as double-peak structure close to the Brillouin zone boundary. These high-energy features also appear in the superfluid phase which is characterized by a pronounced phonon mode at small momenta and energies, as predicted by Bogoliubov and field theory. In one dimension, there are no traces of an amplitude mode in the dynamical single-particle and two-particle correlation functions.Comment: 15 pages, 12 figure

    Quantum Monte Carlo and variational approaches to the Holstein model

    Full text link
    Based on the canonical Lang-Firsov transformation of the Hamiltonian we develop a very efficient quantum Monte Carlo algorithm for the Holstein model with one electron. Separation of the fermionic degrees of freedom by a reweighting of the probability distribution leads to a dramatic reduction in computational effort. A principal component representation of the phonon degrees of freedom allows to sample completely uncorrelated phonon configurations. The combination of these elements enables us to perform efficient simulations for a wide range of temperature, phonon frequency and electron-phonon coupling on clusters large enough to avoid finite-size effects. The algorithm is tested in one dimension and the data are compared with exact-diagonalization results and with existing work. Moreover, the ideas presented here can also be applied to the many-electron case. In the one-electron case considered here, the physics of the Holstein model can be described by a simple variational approach.Comment: 18 pages, 11 Figures, v2: one typo correcte

    950-94 Real-time Three-dimensional Intracoronary Ultrasonography: High Resolution Dynamic Images of Coronary Artery Lesions

    Get PDF
    Intravascular ultrasound displays coronary arteries in independent crosssectional images with no axial information. Three-dimensional reconstruction is mandatory, but cardiac cycle linked vessel motions and torsions of the arteries do not allow to apply simple devices that are used for peripheral vessels.Methods and results:We used a 2.9 F 30 MHz intravascular imaging system in combination with a motorized catheter pullback device. ECG and respiration triggering was performed and cubic datasets were acquired with a time resolution of 25 frames/s. Axial increments were set at 0.1 mm over a distance along the vessels of 25 to 35 mm. After processing the original registrations, three-dimensional real-time images could be created in any plane through the dataset. 25 patients with coronary artery disease were investigated before and after therapeutic interventions including Palmaz-Schatz stents (n=6), laser angioplasty (n=5), directional atherectomy (n=41, and balloon angioplasty (n=21). The system provided excellent images in all patients. Since the spatial geometry of the stents was known the reliability of the three-dimensional images could easily be proven. Dissection membranes, plaques and vessel takeoffs were clearly visualized in their spatial orientation, and the effect of interventions could be demonstrated in all cases. Major problems arise from tortuous vessels with regionally reduced original image quality and from surface definitions by user dependent settings of the noiselthreshold level.ConclusionReal-time three-dimensional reconstruction of the coronary arteries is possible and extends future application of intravascular sonography
    corecore